Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Nutr ; 9: 809865, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35425792

RESUMO

Childhood obesity prevention is important to avoid obesity and its comorbidities into adulthood. Although the energy density of food has been considered a main obesogenic factor, a focus on food quality rather that the quantity of the different macronutrients is needed. Therefore, this study investigates the effects of changing the quality of carbohydrates from rapidly to slowly digestible carbohydrates on metabolic abnormalities and its impact on obesity in growing rats fed a high-fat diet (HFD). Growing rats were fed on HFD containing carbohydrates with different digestion rates: a HFD containing rapid-digesting carbohydrates (OBE group) or slow-digesting carbohydrates (ISR group), for 4 weeks and the effect on the metabolism and signaling pathways were analyzed in different tissues. Animals from OBE group presented an overweight/obese phenotype with a higher body weight gain and greater accumulation of fat in adipose tissue and liver. This state was associated with an increase of HOMA index, serum diacylglycerols and triacylglycerides, insulin, leptin, and pro-inflammatory cytokines. In contrast, the change of carbohydrate profile in the diet to one based on slow digestible prevented the obesity-related adverse effects. In adipose tissue, GLUT4 was increased and UCPs and PPARγ were decreased in ISR group respect to OBE group. In liver, GLUT2, FAS, and SRBP1 were lower in ISR group than OBE group. In muscle, an increase of glycogen, GLUT4, AMPK, and Akt were observed in comparison to OBE group. In conclusion, this study demonstrates that the replacement of rapidly digestible carbohydrates for slowly digestible carbohydrates within a high-fat diet promoted a protective effect against the development of obesity and its associated comorbidities.

2.
ACS Sens ; 6(7): 2563-2573, 2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34148347

RESUMO

A new chloride-sensitive red fluorescent protein derived from Entacmaea quadricolor is described. We found that mBeRFP exhibited moderate sensitivity to chloride and, via site-directed mutagenesis (S94V and R205Y), we increased the chloride affinity by more than an order of magnitude (kd = 106 ± 6 mM) at physiological pH. In addition, cis-trans isomerization of the chromophore produces a dual emission band with different chloride sensitivities, which allowed us to develop a ratiometric methodology to measure intracellular chloride concentrations.


Assuntos
Cloretos , Concentração de Íons de Hidrogênio , Proteínas Luminescentes/genética , Mutagênese Sítio-Dirigida
3.
Nutrients ; 12(9)2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854204

RESUMO

A nutritional growth retardation study, which closely resembles the nutritional observations in children who consumed insufficient total energy to maintain normal growth, was conducted. In this study, a nutritional stress in weanling rats placed on restricted balanced diet for 4 weeks is produced, followed by a food recovery period of 4 weeks using two enriched diets that differ mainly in the slow (SDC) or fast (RDC) digestibility and complexity of their carbohydrates. After re-feeding with the RDC diet, animals showed the negative effects of an early caloric restriction: an increase in adiposity combined with poorer muscle performance, insulin resistance and, metabolic inflexibility. These effects were avoided by the SDC diet, as was evidenced by a lower adiposity associated with a decrease in fatty acid synthase expression in adipose tissue. The improved muscle performance of the SDC group was based on an increase in myocyte enhancer factor 2D (MEF2D) and creatine kinase as markers of muscle differentiation as well as better insulin sensitivity, enhanced glucose uptake, and increased metabolic flexibility. In the liver, the SDC diet promoted glycogen storage and decreased fatty acid synthesis. Therefore, the SDC diet prevents the catch-up fat phenotype through synergistic metabolic adaptations in adipose tissue, muscle, and liver. These coordinated adaptations lead to better muscle performance and a decrease in the fat/lean ratio in animals, which could prevent long-term negative metabolic alterations such as obesity, insulin resistance, dyslipidemia, and liver fat deposits later in life.


Assuntos
Tecido Adiposo/metabolismo , Adiposidade , Carboidratos da Dieta/administração & dosagem , Fígado/metabolismo , Músculo Esquelético/metabolismo , Animais , Digestão , Metabolismo Energético , Glucose/metabolismo , Crescimento , Resistência à Insulina , Masculino , Distúrbios Nutricionais , Ratos Wistar , Aumento de Peso
4.
Nutrients ; 12(2)2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-32092940

RESUMO

Skeletal muscle plays a relevant role in metabolic flexibility and fuel usage and the associated muscle metabolic inflexibility due to high-fat diets contributing to obesity and type 2 diabetes. Previous research from our group indicates that a high-fat and rapid-digesting carbohydrate diet during pregnancy promotes an excessive adipogenesis and also increases the risk of non-alcoholic fatty liver disease in the offspring. This effect can be counteracted by diets containing carbohydrates with similar glycemic load but lower digestion rates. To address the role of the skeletal muscle in these experimental settings, pregnant rats were fed high-fat diets containing carbohydrates with similar glycemic load but different digestion rates, a high fat containing rapid-digesting carbohydrates diet (HF/RD diet) or a high fat containing slow-digesting carbohydrates diet (HF/SD diet). After weaning, male offspring were fed a standard diet for 3 weeks (weaning) or 10 weeks (adolescence) and the impact of the maternal HF/RD and HF/SD diets on the metabolism, signaling pathways and muscle transcriptome was analyzed. The HF/SD offspring displayed better muscle features compared with the HF/RD group, showing a higher muscle mass, myosin content and differentiation markers that translated into a greater grip strength. In the HF/SD group, metabolic changes such as a higher expression of fatty acids (FAT/CD36) and glucose (GLUT4) transporters, an enhanced glycogen content, as well as changes in regulatory enzymes such as muscle pyruvate kinase and pyruvate dehydrogenase kinase 4 were found, supporting an increased muscle metabolic flexibility and improved muscle performance. The analysis of signaling pathways was consistent with a better insulin sensitivity in the muscle of the HF/SD group. Furthermore, increased expression of genes involved in pathways leading to muscle differentiation, muscle mass regulation, extracellular matrix content and insulin sensitivity were detected in the HF/SD group when compared with HF/RD animals. In the HF/SD group, the upregulation of the ElaV1/HuR gene could be one of the main regulators in the positive effects of the diet in early programming on the offspring. The long-lasting programming effects of the HF/SD diet during pregnancy may depend on a coordinated gene regulation, modulation of signaling pathways and metabolic flexibility that lead to an improved muscle functionality. The dietary early programming associated to HF/SD diet has synergic and positive crosstalk effects in several tissues, mainly muscle, liver and adipose tissue, contributing to maintain the whole body homeostasis in the offspring.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Carboidratos da Dieta/farmacologia , Fenômenos Fisiológicos da Nutrição Materna , Músculo Esquelético/metabolismo , Maleabilidade , Tecido Adiposo/metabolismo , Animais , Dieta Hiperlipídica/métodos , Digestão , Feminino , Perfilação da Expressão Gênica , Carga Glicêmica , Fígado/metabolismo , Masculino , Gravidez , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
5.
J Nutr Biochem ; 61: 183-196, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30253280

RESUMO

An obesogenic environment during pregnancy has been shown to increase the risk of dysregulation on adipogenesis and insulin resistance in the offspring. Being essential for the growing fetus, glucose supply is guaranteed by a number of modifications in the mother's metabolism, and thus, glucose control during pregnancy especially among obese or diabetic women is paramount to prevent adverse consequences in their children. Besides the election of low-glycemic-index carbohydrates, the rate of carbohydrate digestion could be relevant to keep a good glucose control. In the present study, we compared the effects of two high-fat diets with similar glycemic load but different rates of carbohydrate digestion given to pregnant insulin-resistant rats. After birth, all animals were fed a standard diet until age 14 weeks. We analyzed offspring body composition, plasma and adipocyte lipidomics, lipid metabolism in adipose tissue and insulin sensitivity. Those animals whose mothers were fed the rapid-digesting carbohydrate diet exhibited an excessive adipogenesis. Thus, these animals showed a marked lipidemia, increased lipid synthesis in the adipose tissue and reduced glucose transporter amount in the adipose. On the contrary, those animals whose mothers were fed the slow-digesting carbohydrate diet showed a profile in the measured parameters closer to that of the offspring of healthy mothers. These results support the hypothesis that not only glycemic index but the rate of carbohydrate digestion during gestation may be critical to regulate the programming of adipogenesis in the offspring.


Assuntos
Adipogenia/fisiologia , Carboidratos/farmacocinética , Resistência à Insulina , Metabolismo dos Lipídeos , Fenômenos Fisiológicos da Nutrição Materna , Adipogenia/efeitos dos fármacos , Tecido Adiposo/metabolismo , Ração Animal , Animais , Composição Corporal/efeitos dos fármacos , Composição Corporal/fisiologia , Peso Corporal , Feminino , Lipídeos/sangue , Masculino , Gravidez , Ratos Sprague-Dawley
6.
Nutr Metab (Lond) ; 13: 32, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27141227

RESUMO

BACKGROUND: Apple polyphenols could represent a novel nutritional approach in the management and control of blood glucose, especially in type 2 diabetics. The aim of this study was to test the therapeutic potential of an apple polyphenol extract (APE) in an insulin-resistant rat model and to determine the molecular basis of insulin sensitivity action in skeletal muscle cells. METHODS: Acute effect of APE on the postprandial hyperglycemic response was assayed in 15 week old obese Zucker rats (OZR), by using a meal tolerance test (MTT). The ability of APE to improve whole peripheral insulin sensitivity was also assayed in a chronic study by using the euglycemic-hyperinsulinemic clamp technique. To elucidate the molecular mechanisms, rat L6 myotubes were used. Glucose uptake was measured by using 2-[3H]-Deoxy-Glucose (2-DG) and specific inhibitors, as well as phosphorylation status of key kinases, were used to determine the implicated signaling pathway. RESULTS: In vivo study showed that nutritional intervention with APE induced an increase of insulin sensitivity with an increase of glucose infusion rate (GIR) of 45 %. Additionally, in vitro results showed a synergistic effect between APE and insulin as well as increased glucose uptake through GLUT4 translocation in muscle cells. This translocation was mediated by phosphatydil inositol 3-kinase (PI3K) and peroxisome proliferator-activated receptor-gamma (PPARγ) signaling pathways. CONCLUSIONS: As a whole, this study describes the mechanisms involved in the insulin sensitizing effect of APE, which could be considered a promising ingredient for inclusion in nutritional products focused on the management of chronic diseases such as diabetes.

7.
J Cachexia Sarcopenia Muscle ; 7(1): 68-78, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27065075

RESUMO

BACKGROUND: L-Leu and its metabolite ß-hydroxy-ß-methylbutyrate (HMB) stimulate muscle protein synthesis enhancing the phosphorylation of proteins that regulate anabolic signalling pathways. Alterations in these pathways are observed in many catabolic diseases, and HMB and L-Leu have proven their anabolic effects in in vivo and in vitro models. The aim of this study was to compare the anabolic effects of L-Leu and HMB in myotubes grown in the absence of any catabolic stimuli. METHODS: Studies were conducted in vitro using rat L6 myotubes under normal growth conditions (non-involving L-Leu-deprived conditions). Protein synthesis and mechanistic target of rapamycin signalling pathway were determined. RESULTS: Only HMB was able to increase protein synthesis through a mechanism that involves the phosphorylation of the mechanistic target of rapamycin as well as its downstream elements, pS6 kinase, 4E binding protein-1, and eIF4E. HMB was significantly more effective than L-Leu in promoting these effects through an activation of protein kinase B/Akt. Because the conversion of L-Leu to HMB is limited in muscle, L6 cells were transfected with a plasmid that codes for α-keto isocaproate dioxygenase, the key enzyme involved in the catabolic conversion of α-keto isocaproate into HMB. In these transfected cells, L-Leu was able to promote protein synthesis and mechanistic target of rapamycin regulated pathway activation equally to HMB. Additionally, these effects of leucine were reverted to a normal state by mesotrione, a specific inhibitor of α-keto isocaproate dioxygenase. CONCLUSION: Our results suggest that HMB is an active L-Leu metabolite able to maximize protein synthesis in skeletal muscle under conditions, in which no amino acid deprivation occurred. It may be proposed that supplementation with HMB may be very useful to stimulate protein synthesis in wasting conditions associated with chronic diseases, such as cancer or chronic heart failure.

8.
PLoS One ; 10(8): e0135614, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26267903

RESUMO

ß-Hydroxy-ß-methylbutyrate (HMB) has been shown to enhance cell survival, differentiation and protein turnover in muscle, mainly activating phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) and mitogen-activated protein kinases/ extracellular-signal-regulated kinases (MAPK/ERK) signaling pathways. Since these two pathways are related to neuronal survival and differentiation, in this study, we have investigated the neurotrophic effects of HMB in mouse neuroblastoma Neuro2a cells. In Neuro2a cells, HMB promotes differentiation to neurites independent from any effects on proliferation. These effects are mediated by activation of both the PI3K/Akt and the extracellular-signal-regulated kinases (ERK1/2) signaling as demonstrated by the use of specific inhibitors of these two pathways. As myocyte-enhancer factor 2 (MEF2) family of transcription factors are involved in neuronal survival and plasticity, the transcriptional activity and protein levels of MEF2 were also evaluated. HMB promoted MEF2-dependent transcriptional activity mediated by the activation of Akt and ERK1/2 pathways. Furthermore, HMB increases the expression of brain glucose transporters 1 (GLUT1) and 3 (GLUT3), and mTOR phosphorylation, which translates in a higher protein synthesis in Neuro2a cells. Furthermore, Torin1 and rapamycin effects on MEF2 transcriptional activity and HMB-dependent neurite outgrowth support that HMB acts through mTORC2. Together, these findings provide clear evidence to support an important role of HMB in neurite outgrowth.


Assuntos
Neuritos/efeitos dos fármacos , Neuritos/metabolismo , Valeratos/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Transportador de Glucose Tipo 3/metabolismo , Fatores de Transcrição MEF2/metabolismo , Camundongos , Naftiridinas/farmacologia , Neuroblastoma/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo
9.
PLoS One ; 10(2): e0117520, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25658432

RESUMO

Dexamethasone-induced muscle atrophy is due to an increase in protein breakdown and a decrease in protein synthesis, associated with an over-stimulation of the autophagy-lysosomal pathway. These effects are mediated by alterations in IGF-1 and PI3K/Akt signaling. In this study, we have investigated the effects of ß-Hydroxy-ß-methylbutyrate (HMB) on the regulation of autophagy and proteosomal systems. Rats were treated during 21 days with dexamethasone as a model of muscle atrophy. Co-administration of HMB attenuated the effects promoted by dexamethasone. HMB ameliorated the loss in body weight, lean mass and the reduction of the muscle fiber cross-sectional area (shrinkage) in gastrocnemius muscle. Consequently, HMB produced an improvement in muscle strength in the dexamethasone-treated rats. To elucidate the molecular mechanisms responsible for these effects, rat L6 myotubes were used. In these cells, HMB significantly attenuated lysosomal proteolysis induced by dexamethasone by normalizing the changes observed in autophagosome formation, LC3 II, p62 and Bnip3 expression after dexamethasone treatment. HMB effects were mediated by an increase in FoxO3a phosphorylation and concomitant decrease in FoxO transcriptional activity. The HMB effect was due to the restoration of Akt signaling diminished by dexamethasone treatment. Moreover, HMB was also involved in the regulation of the activity of ubiquitin and expression of MurF1 and Atrogin-1, components of the proteasome system that are activated or up-regulated by dexamethasone. In conclusion, in vivo and in vitro studies suggest that HMB exerts protective effects against dexamethasone-induced muscle atrophy by normalizing the Akt/FoxO axis that controls autophagy and ubiquitin proteolysis.


Assuntos
Autofagia/efeitos dos fármacos , Dexametasona/farmacologia , Glucocorticoides/farmacologia , Lisossomos/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Valeratos/farmacologia , Animais , Lisossomos/metabolismo , Masculino , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Força Muscular/efeitos dos fármacos , Músculo Esquelético/metabolismo , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/metabolismo , Fosforilação/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Valeratos/uso terapêutico
10.
FEBS Lett ; 588(14): 2246-54, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-24846141

RESUMO

The balance between the rates of protein synthesis and degradation in muscle is regulated by PI3K/Akt signaling. Here we addressed the effect of ERK activation by sodium tungstate on protein turnover in rat L6 myotubes. Phosphorylation of ERK by this compound increased protein synthesis by activating MTOR and prevented dexamethasone-induced protein degradation by blocking FoxO3a activity, but it did not alter Akt phosphorylation. Thus, activation of ERK by tungstate improves protein turnover in dexamethasone-treated cells. On the basis of our results, we propose that tungstate be considered an alternative to IGF-I and its analogs in the prevention of skeletal muscle atrophy.


Assuntos
Sistema de Sinalização das MAP Quinases , Fibras Musculares Esqueléticas/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Compostos de Tungstênio/farmacologia , Animais , Dexametasona/farmacologia , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína Forkhead Box O3 , Fatores de Transcrição Forkhead/metabolismo , Glucocorticoides/farmacologia , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Fibras Musculares Esqueléticas/efeitos dos fármacos , Atrofia Muscular/prevenção & controle , Complexo de Endopeptidases do Proteassoma/metabolismo , Ratos , Proteína Sequestossoma-1 , Serina-Treonina Quinases TOR/metabolismo , Transcrição Gênica/efeitos dos fármacos , Ubiquitina/genética , Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...